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Destructive power of cavitation

AVOID to maintain performance
‣ turbines (hydroelectricity, pumps) 
‣ high pressure fuel injectors 
‣ high pressure pipes 
‣ propellers

HARNESS for medical treatments
‣ ultrasonic drug delivery 
‣ kidney shockwave lithotripsy 
‣ collapse of cavities near stone surface

Image courtesy: 
Bazan-Peregrino et al., Cavitation-enhanced delivery of a replicating oncolytic 
adenovirus to tumors using focused ultrasound. 
Journal of Controlled Release Volume 169, Issues 1–2, 2013, pp. 40 - 47.

Image courtesy: 
Brennen, “Hydrodynamics of Pumps”. Oxford University Press, 1994.
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Prevalent configurations of cavity clouds

Image courtesy: Plesset and Ellis (1955) Image courtesy: Brennen (1970) 

propeller blades 
turbine blades

en.wikipedia.org/wiki/Rayleigh-Plesset_equation 

past obstaclesfree field

‣ clouds of many (thousands) cavity bubbles 
‣ interactions of the bubbles play a key role

Image courtesy of Kermeen (1956) 

above hydrofoils

http://en.wikipedia.org/wiki/Rayleigh-Plesset_equation
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State of the art
EXPERIMENTS 
‣ Cloud interaction parameter, collapse time to radius (Brennen et al.) 
‣ Averaged quantities, damage assessments (Lohse, Keller, Bose et al.) 
‣ Single/double bubble, proximity effects on jetting (Tomita and Shima)

SIMULATIONS 
‣ Single bubble (Colonius, Caltech), multiple bubbles with models 
‣ Clouds 120 bubbles, under-resolving and coarse-graining (Adams, TUM) 
‣ Clouds 80 bubbles, k-div terms, interface sharpening (Tiwari, et al., 2015) 
‣ Clouds 10K bubbles - Rosinelli, Hejazialhosseini, Hadjidoukas, et al. (2013) 
‣ Clouds 50K bubbles - Šukys, Hadjidoukas, Rasthofer, Wermelinger, et al. (2016)

THEORY/MODELS 
‣ Single bubble, radial symmetry (ODE): 

Rayleigh-Plesset (1949), Prosperetti-Lezzi (1985), Geers (2014)

UNCERTAINTY QUANTIFICATION IN CAVITATION 
‣ Congedo, Goncalves, Rodio (2015) 
‣ 2D, sDEM [Abgrall, 2015], forward UQ propagation
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Governing equations [Kappila] [Masoni] [Allaire]

Equation of state (water phase: stiffened)
E =

1

2
⇢u2 + �p+⇧, � =

1

� � 1
, ⇧ =

�pc
� � 1

.

p =
(E � ⇢u2)� (↵1⇧1 + ↵2⇧2)

↵1�1 + ↵2�2
,

1

⇢c2
=

↵1

⇢1c21
+

↵2

⇢2c22
.

Advection of phase volume fractions
(↵2)t + u ·r↵2 = K(↵1,2, ⇢1,2, c1,2)r · u.

Multiphase flow equations
8
>>><

>>>:

(↵1⇢1)t +r · (↵1⇢1u) = 0,

(↵2⇢2)t +r · (↵2⇢2u) = 0,

(⇢u)t +r · (⇢u⌦ u+ pI) = 0,

Et +r · ((E + p)u) = 0.

water vapor cavities

density ⇢, velocity vector u, pressure p ↵1 + ↵2 = 1

(↵1 = 1, ↵2 = 0) (↵1 = 0, ↵2 = 1)

2D slice of a 3D domain cavity sizes of 50-200 µm (log-Gaussian)
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Problem setup

⇢ [kg/m3]

p [bar]

�

pc [bar]

water vapor
1000 1
100 0.0234
6.59 1.4

4049 0

Generation of the cavity cloud 
‣ locations: uniform distribution 
‣ radii: log-Gaussian, 50 - 200 µm 

cloud radius
cloud “surface”

cavity radius
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Finite Volume Solver

Cj
xj+1/2xj-1/2Cj-1

Uj

Uj-1
Fj-1/2

Fj+1/2

∆x‣ Cell averages Uj(t) ⇡
1

|Cj |

Z

Cj

U(x, t)dx

‣ Semi-discrete 
formulation (ODE)

d

dt
Uj(t) +

1

�x

⇣
Fj+ 1

2
� Fj� 1

2

⌘
= 0

‣ High order 
reconstruction

WENO3 / WENO5 
[Harten, Shu, Osher]

xj+1/2xj-1/2

Uj

Uj-1 Uj-1/2

Uj-1/2
_

+

‣ RK3 time stepping 
[Gottlieb, Shu, Tadmor]

Un
j ! Un+1

j

‣ Approximate Riemann 
solver HLLC Fj+ 1

2
⇡ FHLLC

j+ 1
2

(U+,U�)

@tU(x, t) + divF(U,x) = 0
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CUBISM-MPCF

Block-based memory layout
(spatial locality)

Instruction/data-level parallelism
(Structure of Arrays for SSE/QPX vectorization)

Domain decomposition MPI/OpenMP
(dynamic loop scheduling) (non-blocking P2P communication)

(asynchronous progress for C/T overlap)

Peta-scale Multi-Phase Compressible Flow approximate Riemann solver
[Rossinelli, Hejazialhosseini, Hadjidoukas, Conti, Bergdorf, Wermelinger, Rasthofer, Šukys]

‣ ACM Gordon Bell Prize: 14.4 Pflops (72% peak) on Sequoia (IBM BlueGene/Q, 1.6M cores) 
‣ Wavelet-based I/O compression | ~100x reduction | 1% overhead 
‣ Fault-tolerance with restart mechanism | lossless compression ~10x reduction
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Petascale simulations of cloud cavitation collapse
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Averages | non-sphericities and non-porosities

propagation of non-spherical cavities 
from cloud surface to center

propagation of non-porous cavities 
from cloud surface to center
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Holes in the cavities from re-entrant micro-jets

http://eswt.net/wp-content/uploads/2011/10/cavitation.gif

http://1.bp.blogspot.com/-uSYxEFf2_sw/Ukw-iDDivXI/AAAAAAAAIj8/X1Vm8thHLhA/s1600/5.+Stages+in+bubble+collapse.png

caused by re-entrant 
micro-jet 
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Topology of the cavities: genus (# of holes)

genus 0 genus 1 genus 2 (genus 3)

caused by re-entrant 
micro-jet 
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re-entrant micro-jets occur 
omnipresent before final collapse

Holes in the cavities from re-entrant micro-jets

propagation of cavities with holes 
from cloud surface to center
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Uncertainty quantification
in cloud cavitation collapse
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Collapse of two random clouds
2 clouds: different statistical realizations (RNG seeds) of the initial configuration

Uniformly distributed (random) cavity positions
Spherical clouds of 100 equally sized (75µm) cavities
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Collapse of two random clouds
2 clouds: different statistical realizations (RNG seeds) of the initial configuration

Uniformly distributed (random) cavity positions
Spherical clouds of 100 equally sized (75µm) cavities
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Level Number of samples

1

0

2

Mesh

Multi-Level Monte Carlo [Heinrich, 1999] [Giles, 2008]

Variance reduction technique using sampling on a hierarchy of mesh resolutions



24

Multi-Level Monte Carlo method
Variance reduction technique using sampling on a hierarchy of mesh resolutions

1. Generate i.i.d. samples of random input quantities for each resolution level 0…L 
2. For each level and sample, solve for approximate solutions using Cubism-MPCF 
3. Assemble MLMC estimator for statistics of quantities of interest:

‣ Sampling error of the MLMC estimator is given in terms of level correlations:

"2 =

V[q0]
M0

+

LX

`=1

V[q` � q`�1]

M`
⇡ V[q]

 
1

M0
+ 2

LX

`=1

1� Cor[q`, q`�1]

M`

!
.

E[qL] = E[q0] +
LX

`=1

�
E[q`]�E[q`�1]

�
⇡ 1

M0

M0X

i=1

qi0 +
LX

`=1

1

M`

MX̀

i=1

(qi`�qi`�1).
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Optimal control variate coefficients

‣ This argument can be extended to the telescoping sum of the MLMC estimator

E[qL] = ↵0E[q0] +
LX

`=1

⇣
↵`E[q`]� ↵`�1E[q`�1]

⌘
.

‣ Each level in MLMC estimator is a special case of control variate with coefficient 1

E[q`] ⇡ ↵E[q`�1] +
⇣
E[q`]� ↵E[q`�1]

⌘
.

‣ Optimal coefficient is given in terms of correlations between two levels

↵ =

Cov[q`, q`�1]

Var[q`�1]
⇡ Cor[q`, q`�1].

‣ Related independent work for reused sampling on coarser levels: 
[Peherstorfer, Willcox, Gunzburger, 2015]

↵` =
�2
L,`

�2
`
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Optimal control variate coefficients
Minimizes variance reduction costs for weakly correlated resolution levels

‣ Minimization of the above pertains to solving linear system of equations,
@

@↵`
C[q⇤L] = 0, ` = 0, . . . , L� 1.

‣ Total computational work-weighted variance over all levels is given by

C[q⇤L] = ↵2
0V[q0]W0 +

LX

`=1

⇣
↵2
`V[q`] + ↵2

`�1V[q`�1]� 2↵`↵`�1 Cov[q`, q`�1]

⌘
W`.

‣ Linear system can be written in a form of a diagonally dominant matrix
2

666664

�2
0 (W1 +W0) ��2

1,0W1

��2
1,0W1

. . .
. . .

. . .
. . . ��2
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��2
L�1,L�2WL�1 �2

L�1 (WL +WL�1)

3

777775

2

66666664

↵0

↵1

...

↵L�2

↵L�1

3

77777775

=

2

66666664

0

0

...

0

�2
L,L�1WL

3
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Example and comments
For two levels

‣ Coarsest level already available — classical control variate coefficient is recovered
‣ Significantly more expensive and strongly correlated finer level — classical MLMC

‣ For two levels of resolution (i.e. L=1), optimal control variate coefficient is

↵0 =
W1

W1 +W0

�1,0

�0
.

‣ WARNING: significantly more expensive but weakly correlated finer level with  
 
 
 
leads to variance increase in MLMC, unless optimal control variates are used

⇢1,0 <
1

2

W1 +W0

W1
.
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Optimized number of samples [Giles, 2008]

Using empirical estimators for variances and measurements of computations work

‣ Sampling error of the MLMC estimator is given in terms of level variances:

Optimization problem 
Given a required tolerance τ and 

variances      each level, 
minimize computational work and 
find optimal number of samples 

such that tolerance is attained:          .

�2
`

"  ⌧

Remark: an analogous result is available for a prescribed computational budget (instead of tolerance).

"2 =
V[↵0q0]

M0
+

LX

`=1

V[↵`q` � ↵`�1q`�1]

M`
⇡ �̃2

0

M0
+

LX

`=1

�̃2
`

M`
.

Optimized number of samples 
Using Lagrange multipliers for derivations, 
optimized number of samples are given by 

M` =

2

666
1

⌧2

s
�̃2
`

W`

LX

k=0

q
�̃2
kWk

3

777
.
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PyMLMC

solver

MPCF wrapper

other solver

samples scheduler

statistics

indicators

errors

CubismMPCF

results

goal

static adaptive

confidence intervals mean histogram

other wrapper

covariances runtimes
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GIT repository: pymlmc.sukys.lt

median standard deviations ???

coefficients

variances
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Insight to inner workings of MLMC
Majority of samples computed on lowest levels of resolution - reduced budget

adaptive number of warmup samples observed speedup: 176x
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Insight to inner workings of MLMC
Optimal control variate coefficients
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Insight to inner workings of MLMC
Correlation estimates for differences between resolution levels decrease
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Results of MLMC
Uncertainty quantification (i.e. mean, confidence intervals) for QoIs

vapor volume

no significant uncertainty

pressure sensor

wide range of probable pressures 
100 MPa - 6000 MPa



34

Results of MLMC
Evolution of inwards propagating pressure wave

peak pressure location within the cloud
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Results of MLMC
Secondary cavitation observed at the epicenter immediately after the final collapse

vapor volume fraction sensor

“secondary cavitation” region 
after the final cloud collapse

pressure sensor

wide 90% confidence interval 
100 MPa - 500 MPa
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Two dimensional slices
Single realization of a slice through the center of the cloud
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One dimensional lines
Uncertainties along the line through the center of the cloud (at peak collapse)
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Optimal control variate coefficients
Speedup

Level
samples

Budget in
CPU hours

Total
speedup

Relative
error

MC ∞ 2 billion - 9.5E-03

MLMC  4352, 258, 32, 3 50 million 50.6 9.5E-03

OCV-MLMC  6400, 384, 40, 2 16.6 million 176.8 9.5E-03

higher OCV-MLMC speedup is expected 
for even less correlated levels
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Summary and outlook

‣ OCV-MLMC for uncertainty quantification in multiple sensors for pressure, density, etc. 
‣ instead of a single value, confidence intervals or PDFs for peak pressures are provided  

‣ Optimal control variate coefficients for weakly correlated levels without sample “recycling” 

‣ Fault tolerance: if some samples fail, the rest are used to assemble estimators [Pauli, Schwab, Arbenz]  
  

‣  OUTLOOK 
‣ improve quality of constructed PDFs, especially on finer levels [collaboration with T. Barth, NASA] 

‣ discrete optimization for the number of samples [Pauli, Arbenz] 

‣ unbiased estimator using randomised resolution levels [Rhee, Glynn, 2015] 

‣ investigate the causes for large uncertainties in the peak pressures during cloud cavitation collapse
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Improving the quality of PDFs using KDEs
Optimal kernel widths for kernel density estimators of the PDFs few samples!

Idea: propagate information about optimal kernel widths 
from coarser levels to finer levels by means of Bayesian inference
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HPC resources
CSCS allocation 
Project s500 
Piz Daint 
Cray XC30 
42 176 cores 
5 272 GPUs 
7.8 PFlops 
Switzerland

PRACE allocation 
Jülich Research Center 
Project 091 
JUQUEEN 
BlueGene/Q 
458 752 cores 
5.9 PFlops 
Germany

PRACE allocation 
CINECA 
Project 09_2376 
FERMI 
BlueGene/Q 
163 840 cores 
2.1 PFlops 
Italy

INCITE allocation 
Argonne National Labs 
Project “CloudPredict” 
MIRA 
BlueGene/Q 
786 432 cores 
10 PFlops 
United States
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